#### The Huntington-Hill Method – Version 1

Lecture 23 Section 4.5

Robb T. Koether

Hampden-Sydney College

Wed, Oct 24, 2018

Version 1 – Non-algorithmic

Assignment

#### **Outline**

- 2 Version 1 Non-algorithmic
- Assignment

- In 1929, Congress set the size of the House of Representatives at 435 members.
- In 1941, Congress adopted the Huntington-Hill method for apportioning the seats in the House.
- Both laws remain in effect and will remain in effect for the foreseeable future.

- There are two ways to apply the Huntington-Hill method.
- The first method, described in the textbook, involves guessing a modified divisor in a way similar to Jefferson's, Adams's, and Webster's methods.

- There are two ways to apply the Huntington-Hill method.
- The first method, described in the textbook, involves guessing a modified divisor in a way similar to Jefferson's, Adams's, and Webster's methods.
- Therefore, it is not quite an algorithm.

- There are two ways to apply the Huntington-Hill method.
- The first method, described in the textbook, involves guessing a modified divisor in a way similar to Jefferson's, Adams's, and Webster's methods.
- Therefore, it is not quite an algorithm.
- The second method, which is the one used by the government, involves no guesswork, but it may take (much) longer to compute.
- It is an algorithm.

#### **Outline**

- Version 1 Non-algorithmic
- Assignment

## The Huntington-Hill Method – Version 1

- Compute the standard quotas q<sub>i</sub> for each state, as in the other methods.
- Round off the standard quota for each state by the following method.
  - Let *L* be the lower quota and *U* be the upper quota.
  - Compute the cutoff as  $\sqrt{LU}$ .
  - If  $q_i < \sqrt{LU}$ , then round down. Otherwise, round up.
  - The rounded value is the number of seats for that state.
- If the total number of seats is not M, then choose a modified divisor and repeat the procedure.

## The Huntington-Hill Method – Version 1

- Compute the standard quotas q<sub>i</sub> for each state, as in the other methods.
- Round off the standard quota for each state by the following method.
  - Let *L* be the lower quota and *U* be the upper quota.
  - Compute the cutoff as  $\sqrt{LU}$ .
  - If  $q_i < \sqrt{LU}$ , then round down. Otherwise, round up.
  - The rounded value is the number of seats for that state.
- If the total number of seats is not M, then choose a modified divisor and repeat the procedure.
- This method guarantees that each state gets at least one seat.
  How so?

# **Huntington-Hill Cutoffs**

#### Comparison of Cutoffs

| Lower | Upper | Huntington-Hill                       | Traditional |
|-------|-------|---------------------------------------|-------------|
| Quota | Quota | Cutoff                                | Cutoff      |
| 0     | 1     | $\sqrt{0\cdot 1} = \sqrt{0} = 0.000$  | 0.5         |
| 1     | 2     | $\sqrt{1\cdot 2} = \sqrt{2} = 1.414$  | 1.5         |
| 2     | 3     | $\sqrt{2\cdot 3} = \sqrt{6} = 2.449$  | 2.5         |
| 3     | 4     | $\sqrt{3\cdot 4} = \sqrt{12} = 3.464$ | 3.5         |
| 4     | 5     | $\sqrt{4\cdot 5} = \sqrt{20} = 4.472$ | 4.5         |

- The populations of three states are 3,7 and 10 million people, respectively.
- The total number of seats apportioned to those states is 7.
- Use Version 1 to determine how many seats each state should get.

- The total population is P = 20.
- The number of seats is M = 7.
- The standard divisor is SD =  $\frac{20}{7}$  = 2.857.

|   |       |     | Standard |   |   |             |       |
|---|-------|-----|----------|---|---|-------------|-------|
|   | State | Pop | Quota    | L | U | $\sqrt{LU}$ | Seats |
|   | Α     | 3   |          |   |   |             |       |
| ĺ | В     | 7   |          |   |   |             |       |
|   | С     | 10  |          |   |   |             |       |

|      |   |     | Standard |   |   |             |       |
|------|---|-----|----------|---|---|-------------|-------|
| Stat | е | Pop | Quota    | L | U | $\sqrt{LU}$ | Seats |
| Α    |   | 3   | 1.05     |   |   |             |       |
| В    |   | 7   | 2.45     |   |   |             |       |
| С    |   | 10  | 3.50     |   |   |             |       |

|       |     | Standard |   |   |             |       |
|-------|-----|----------|---|---|-------------|-------|
| State | Pop | Quota    | L | U | $\sqrt{LU}$ | Seats |
| Α     | 3   | 1.05     | 1 | 2 |             |       |
| В     | 7   | 2.45     | 2 | 3 |             |       |
| С     | 10  | 3.50     | 3 | 4 |             |       |

|       |     | Standard |   |   |                         |       |
|-------|-----|----------|---|---|-------------------------|-------|
| State | Pop | Quota    | L | U | $\sqrt{LU}$             | Seats |
| Α     | 3   | 1.05     | 1 | 2 | $\sqrt{1\cdot 2}=1.414$ |       |
| В     | 7   | 2.45     | 2 | 3 | $\sqrt{2\cdot 3}=2.449$ |       |
| С     | 10  | 3.50     | 3 | 4 | $\sqrt{3\cdot 4}=3.464$ |       |

|       |     | Standard |   |   |                         |       |
|-------|-----|----------|---|---|-------------------------|-------|
| State | Pop | Quota    | L | U | $\sqrt{LU}$             | Seats |
| Α     | 3   | 1.05     | 1 | 2 | $\sqrt{1\cdot 2}=1.414$ | 1     |
| В     | 7   | 2.45     | 2 | 3 | $\sqrt{2\cdot 3}=2.449$ | 3     |
| С     | 10  | 3.50     | 3 | 4 | $\sqrt{3\cdot 4}=3.464$ | 4     |

#### Example (Example – Version 1)

ullet The total number of seats apportioned is 8, so the "surplus" is -1.

- ullet The total number of seats apportioned is 8, so the "surplus" is -1.
- We need a larger divisor.



- ullet The total number of seats apportioned is 8, so the "surplus" is -1.
- We need a larger divisor.
- Let's try MD = 3.2.

| State | Pop | Standard<br>Quota | L | U | $\sqrt{LU}$ | Seats |
|-------|-----|-------------------|---|---|-------------|-------|
| Α     | 3   |                   |   |   |             |       |
| В     | 7   |                   |   |   |             |       |
| С     | 10  |                   |   |   |             |       |

|       |     | Standard |   |   |             |       |
|-------|-----|----------|---|---|-------------|-------|
| State | Pop | Quota    | L | U | $\sqrt{LU}$ | Seats |
| Α     | 3   | 0.937    |   |   |             |       |
| В     | 7   | 2.187    |   |   |             |       |
| С     | 10  | 3.125    |   |   |             |       |

|       |     | Standard |   |   |             |       |
|-------|-----|----------|---|---|-------------|-------|
| State | Pop | Quota    | L | U | $\sqrt{LU}$ | Seats |
| Α     | 3   | 0.937    | 0 | 1 |             |       |
| В     | 7   | 2.187    | 2 | 3 |             |       |
| С     | 10  | 3.125    | 3 | 4 |             |       |

|       |     | Standard |   |   |                         |       |
|-------|-----|----------|---|---|-------------------------|-------|
| State | Pop | Quota    | L | U | $\sqrt{LU}$             | Seats |
| Α     | 3   | 0.937    | 0 | 1 | $\sqrt{0\cdot 1}=0.000$ |       |
| В     | 7   | 2.187    | 2 | 3 | $\sqrt{2\cdot 3}=2.449$ |       |
| С     | 10  | 3.125    | 3 | 4 | $\sqrt{3\cdot 4}=3.464$ |       |

|       |     | Standard |   |   |                         |       |
|-------|-----|----------|---|---|-------------------------|-------|
| State | Pop | Quota    | L | U | $\sqrt{LU}$             | Seats |
| Α     | 3   | 0.937    | 0 | 1 | $\sqrt{0\cdot 1}=0.000$ | 1     |
| В     | 7   | 2.187    | 2 | 3 | $\sqrt{2\cdot 3}=2.449$ | 2     |
| С     | 10  | 3.125    | 3 | 4 | $\sqrt{3\cdot 4}=3.464$ | 3     |

#### Example (Example – Version 1)

ullet The total number of seats apportioned is 6, so the "surplus" is +1.

- The total number of seats apportioned is 6, so the "surplus" is +1.
- We need a smaller divisor.



- $\bullet$  The total number of seats apportioned is 6, so the "surplus" is +1.
- We need a smaller divisor.
- Let's try MD = 2.86.

| State | Pop | Standard<br>Quota | L | U | $\sqrt{LU}$ | Seats |
|-------|-----|-------------------|---|---|-------------|-------|
| Α     | 3   |                   |   |   |             |       |
| В     | 7   |                   |   |   |             |       |
| С     | 10  |                   |   |   |             |       |

| State | Pop | Standard<br>Quota | L | U | $\sqrt{LU}$ | Seats |
|-------|-----|-------------------|---|---|-------------|-------|
| Α     | 3   | 1.049             |   |   |             |       |
| В     | 7   | 2.447             |   |   |             |       |
| С     | 10  | 3.498             |   |   |             |       |

|       |     | Standard |   |   |             |       |
|-------|-----|----------|---|---|-------------|-------|
| State | Pop | Quota    | L | U | $\sqrt{LU}$ | Seats |
| Α     | 3   | 1.049    | 1 | 2 |             |       |
| В     | 7   | 2.447    | 2 | 3 |             |       |
| С     | 10  | 3.498    | 3 | 4 |             |       |

|       |     | Standard |   |   |                         |       |
|-------|-----|----------|---|---|-------------------------|-------|
| State | Pop | Quota    | L | U | $\sqrt{LU}$             | Seats |
| Α     | 3   | 1.049    | 1 | 2 | $\sqrt{1\cdot 2}=1.414$ |       |
| В     | 7   | 2.447    | 2 | 3 | $\sqrt{2\cdot 3}=2.449$ |       |
| С     | 10  | 3.498    | 3 | 4 | $\sqrt{3\cdot 4}=3.464$ |       |

|       |     | Standard |   |   |                         |       |
|-------|-----|----------|---|---|-------------------------|-------|
| State | Pop | Quota    | L | U | $\sqrt{LU}$             | Seats |
| Α     | 3   | 1.049    | 1 | 2 | $\sqrt{1\cdot 2}=1.414$ | 1     |
| В     | 7   | 2.447    | 2 | 3 | $\sqrt{2\cdot 3}=2.449$ | 2     |
| С     | 10  | 3.498    | 3 | 4 | $\sqrt{3\cdot 4}=3.464$ | 4     |

## Huntington-Hill-CA, TX, NY, VA, WV, and WY

#### Example (Huntington-Hill-CA, TX, NY, VA, WV, and WY)

|       |            | Std   |   |   |             |       |
|-------|------------|-------|---|---|-------------|-------|
| State | Population | Quota | L | U | $\sqrt{LU}$ | Seats |
| CA    | 39,776,830 |       |   |   |             |       |
| TX    | 28,704,330 |       |   |   |             |       |
| NY    | 19,862,512 |       |   |   |             |       |
| VA    | 8,525,660  |       |   |   |             |       |
| WV    | 1,803,077  |       |   |   |             |       |
| WY    | 573,720    |       |   |   |             |       |

- The states CA, TX, NY, VA, WV, and WY currently have 131 congressional seats (CA 53, TX 36, NY 27, VA 11, WV 3, WY 1).
- Use the website to apply the Huntington-Hill method, version 1, to these states, using the 2018 estimated populations.

#### **Outline**

- Version 1 Non-algorithmic
- Assignment

# **Assignment**

### **Assignment**

• Chapter 4 Exercises 43, 44, 45, 46, 49. Use Version 1.